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Abstract In this paper 1 constmct lattice models with an underlying Uq0sp(2. 2) superalgebra 
symmetry. I find new solutions to the graded Yang-Baxter equation. These trigonometric 
R-matrices depend on three continuous parameters: the spectral parameter. the deformation 
parameter q and the U(1) parameter, b, of the superalgebra. It must be emphasized that the 
parameter q is generic and the parameter b does not correspond to the ‘nilpotency’ parameter of 
(151. The rational limits are given; they also depend on the U(1) parameter and this dependence 
cannot be rescaled away. I give the Bethe ansatz solution of the lattice models built from some 
of these R-matrices, while for other mhices, due to the particular name of the representation 
theory of 0 4 2 ,  2), I conjecture the result. The parameter b appears as a continuous generalized 
spin. Finally I briefiy discuss the problem of finding the ground state of these models. 

1. Introduction 

Lattice models provide us with one way to re-darize field theories by cutting off the 
short distance divergences. Lattices models also lead to physical models of statistical and 
condensed matter physics (like the king model, the Hubbard model, polymer models, etc). 
%o-dimensional N = 2 superconformal field theories, which appear in the study of string 
theories, are at least as appealing as lattice models. It is the existence of a topological sector, 
for which a semiclassical approach gives exact quantum results, that renders N = 2 theories 
so attractive. In this sense N = 2 theories are simpler than non-supersymmetric theories. 
By studying lattice analogues of N = 2 models we hope to recover the ‘simplified‘ sfmcture 
of the field theory at the lattice level and to apply N = 2 supersymmetry to physical models 
through the lattice description. 

A whole family of lattice-analogues of N = 2 coset models was constructed in [I]. 
The presence of a topological sector was used to obtain these models. However, the 
supersymmetry does not seem to be realized on the lattice. In an attempt to build lattice 
models through a ~duect approach and with some degree of supersymmetry on the lattice, 
it is natural to consider bosonic and fermionic lattice variables. In recent years quantum 
groups have emerged as a common underlying symmetry of field theories and lattice models 
[2]. For instance, Uy+su(2) c3 Uy.osp(2, 2) was found to be an underlying symmetry of 
N = 2 superconformal theories, for the holomorphic part, in the Neveu-Schwarz (NS) sector 
PI .  

Let U,& be the affine q-deformed universal enveloping algebra for a~Lie  algebra g. 
A general method for obtaining lattice models, with states belonging to representations of 
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the Lie algebra, and which have an underlying U,& symmetry, is by making the transfer 
matrix out of products of R-matrices. The corresponding lattice models are called vertex 
models. Such a method generalizes naturally to superalgebras. In what follows I consider 
the osp(2.2) superalgebra. This is a subalgebra of the N = 2 superconformal algebra. In 
looking for supersymmetry on the lattice, it is this subalgebra that one hopes to realize on 
the lattice. 

In this paper I construct lattice models built from U,osp(Z,Z) R-matrices. I first 
obtain new trigonometric solutions for the Yang-Baxter equation. These solutions depend 
on an additional continuous parameter b for generic values of 4. The rational forms of 
these matrices also depend on b. (Trigonometric solutions were constructed in [4] for the 
fundamental representations of simple Lie superalgebras.) I then perform an algebraic Bethe 
ansatz to diagonalize the hansfer matrix with periodic boundary conditions. The parameter 
b appears as a generalized spin in the Bethe ansatz equations. I briefly discuss the problem 
of determining the ground state and the dependence of the central charge and conformal 
weights on the the parameter b. 

2. The superalgebra osp(2,Z) 

2.1. Definitions and notation 

The osp(2,Z) superalgebra is eight-dimensional and has rank two. There are four even 
generators, S+, S3 and B ,  and four odd generators, V* and v+. Let 1, ] denote the usual 
commutator, and { , ) denote the anti-commutator. The commutation relations are given by 

[s3, se] = && [s+, s-1 = 2& (1) 
[P*, V*l = 0 [Pr, V*l = *v* [P+, V*l = *v* tPT,v*l = 0 (2) 
(V , ,q}={Vj ,Vj}=O i , j = &  (3) 
[V+, v-) = -1P * + (V+,%]=--!P 2 -  (4) 
(V+,V*) =.tis* (5) 

- - 
_ _  

- - 

where, following the noetion of 151, 

P+ = S3 T B. (6) 
The generators also satisfy the graded Jacobi identity. 

The even sub-algebra is su(Z)@u(l),  and is generated by S+, S3 and B or, equivalently, 
& and P*. The generators V* (resp. v*) form su(2) spin-; tensors (spinors) with 
'hypercharge' B = 1 (resp. B = -1) 2 '  

The osp(2,Z)  superalgebra is a subalgebra of the N = 2 superconformal algebra in the 
NS sector. Using the notation of [6] one has 

Lo = -5'3 L* = *& Jo = 2B G:; = 2V* Gi; = 2V*. (7) 

2.2. Some osp(2, 2) representations 

Unlike ordinary Lie algebras, there are two types of representation for most superalgebras. 
The rypical representations are irreducible and are similar to the usual representations 
of ordinary Lie algebras. The values of the Casimirs, the centml elements, for a given 
typical representation, are unique to the representation. The atypical representations have 
no counterpart in the ordinary Lie algebra representations. They can be irreducible or 
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not fully reducible (read reducible but indecomposable). The Casimirs for two atypical 
representations can take the same values. 

The superalgebra osp(2,Z) is isomorphic to the superalgebra s p l ( 2 , l ) .  The 
representation theory of the latter superalgebra was studied in [7,8]. Generically a 
representation (b ,  s )  (b E @, s = 0,4,1, $, . . .) contains four su(2) fB u ( 1 )  multiplets: 

Ib,s,s3) s3 = -s,-s+ 1 ,..., s - 1,s i f s  2 0 (8)  
2. , i f s  > i (9) Ib + f , s - 5 ,  ~ 3 )  ~3 = -S + f , .~:. , s - 2 s - 

16- f,s - ?,s3) s3 = -s + 4. ..., s - :,s - 4 i f s  2 i (IO) 
Ib,s - 1,s3) 's3 = -s+ 1, ..., s - 2,s - 1 i f s > l .  (11) 

The action of the four even generators on these multiplets is the one implied by the notation. 
The four odd generators, in contrast, interpolate between different multiplets.  the precise 
action of these generators, which can be inferred from the defining equations (1)-(5), can 
be found in [7,8]. I shall give later the complete matrix form, of all the generators, for the 
particular representations I consider. 

If b # hs the representation is denoted by [b, s ]  and is typical; the quadratic and cubic 
Casimirs do not vanish. The representation [b, s] has dimension 8s. 

When b = rts several kinds of atypical representations arise. Both Casimirs vanish, 
and yet these representations are not the trivial one-dimensional null representation. One 
kind has dimension 4s + 1 and is denoted by [SI*. To obtain [SI+ (resp. [SI-) one drops 
the two multiplets (b - 4, s - i) and (6, s - 1) (resp. (b + 1, s - f) and (b, s - 1)). 
These representations are irreducible. Other kinds of atypical representation, for which all 
multiplets are kept, have dimension 8s. They contain two representations of the previous 
type with one representation being an invariant subspace of the whole representation. They 
are therefore not fully reducible. 

I 

1 

Other types of atypical representations with different dimensionalities exist. 

3. U*osp(2,2) 

I show how the universal enveloping algebra Uosp(2,2)  is deformed. The coproduct is 
introduced in order to define the universal, spectral parameter-independent R-matrix, which 
depends on q. This matrix will be useful in obtaining spectral parameter-dependent R- 
matrices, R(x, q). which give integrable lattice models. The matrix elements of the matrix 
R ( x ,  q )  give the Boltzmann weights of an integrable lattice model. The coproduct will also 
be used to obtain another spectral parameter-dependent R-matrix, which is one ingredient 
in the Bethe ansatz diagonalization. 

3.1. The q-deformed relations 

I consider the q-deformation Uqosp(2, 2) of the universal enveloping algebra, Uosp(2, 2), 
obtained in [5]. Another deformation exists in [9]. The latter deformation relies on ~a 
harmonic 'oscillator representation of the superalgebra. 

The q-deformation considered here is precisely the one that appears as an underlying 
quantum group symmetry of N = 2 superconformal theories in the NS sector [3]. There 
is also another reason for this choice. Superalgebras, unlike o rd ink  Lie algebras, admit, 
in general, more than one inequivalent basis of simple roots. It turns out that one can 
construct N = 2 supersymmetric Toda field theories only if one chooses a purely fermionic 
simple root system [IO]. This should be taken as an additional hint if one has in mind the 
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construction of a supersymmetric theory. The foregoing deformation is based on the choice 
of a purely fermionic simple root system. 

This 
corresponds to an implicit choice of two purely fermionic simple roots for the basis. The 
relations (2 ) ,  (3) and (5)  are kept unchanged except for the fact that the generators are the 
q-deformed ones. The two relations (4) are replaced by 

The universal enveloping algebra Wosp(2.2) is generated by P*, V*,v* .  

- 
{2V+, 27-1 = [-2P+l = {2V+,  2V-} = f-2P-I (12) 

where 

The q-deformations of relations (1) are obtained from (5) and (12). The q-generators 
S*, S, do not satisfy the usual q-deformed su(2) relations: 

IS,, S+l =A% IS+, S-I = [ Z S d .  (14) 
It is easy to verify that the first relation in ( 1 )  remains the same while the second relation 
becomes 

2P+-I + q-2P++l)  [S+, S-] = -v-V+(q*P++' + q-ZP+-' ) - 7 + V - ( q  - 
(15) -v-v+(qzP-+l + p - I )  - v+v-(q2P--l + q - z P - + l ) ,  

This relation collapses to the usual one, [S+, S-] = [2S31,  for^ certain representations. It is 
interesting to note that the 4 2 )  subalgebra is not deformed to a Uqsu(2) subalgebra of 
Uqosp(2, 2 ) .  This seems to be the case for superalgebras in general (see I l l ]  for example). 

3.2. Coproducts 

The usual tensor product construction, for the operators, of the algebra is not compatible with 
the q-deformed commutation relations of the (Hopf) superalgebra Uqosp(2, 2) .  However, a 
q-deformed tensor product can be defined. This new tensor product is conveniently encoded 
in the coproduct A .  The defining relations are given by [SI 

A(Pi:) = P* @ 1 + 1 @ Pi: (16) 

Again A&) are not given by the usual Uqsu(2) expressions; they can be obtained using 
(5) and (17). 

Throughout this section the explicit tensor product sign @ is graded. This means that the 
following rule is applied minus signs are generated each time two odd elements, generators 
and/or vectors (in some representation) are 'commuted' through one another. 

There is also another coproduct, x, with defining relations obtained by pairwise 
permuting the generators in the defining relations of A (i.e. A @  B + B @ A). Equivalently, 
one has & = Aq-i,  for the explicit dependence on q in the defining relations (17). However, 
as happens with q-deformations of ordinary Lie algebras, it is possible to show that there 
exists a 'matrix' R [ 5 ] ,  in Uqosp(2, 2) @ U,,osp(2,2), such that the coproducts A and E 
are related by 

4 g ) R  = (18) 
for all elements g of U,,osp(2,2). The 'matrix' R is universal because it is representation 
independent and depends only on the algebra. 

A(V*) = q @ V* + V i  @ q-'* A(V*) = @ v* + v+ @ i-'?. (17) 

- 
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The matrix R satisfies the Yang-Baxter equation 

R I Z R I ~ R U  = RzR13Ri2 (19) 

where,for R = C a @ . b ,  4 1 2 = C a @ b @ l ,  R 1 3 = C a @ l @ b , e t c .  
It is the extension of this construction to affme (Kac-Moody) q-deformed algebras in 

general which gives the R-matrix an additional dependence on the spectral  parameter^ x. . 

4. A new R-matrix 

I now determine new R-matrices for a set of four-dimensional representations of  osp (2 ,2 ) .  
The fundamental representation, [O, 41, of the supergroup OSp(2 .2 )  is contained in the set 
of four-dimensional representations [b, 41. 

I first define and then q-deform the representations [b, 41. I obtain the matrix R ( q ,  b) and 
its spectral decomposition. and then find the 'affinized', i.e. spectral parameter dependent, 
version of the matrix R(q, b). 

4.1. The [b, i] representations 

I consider the four-dimensional typical representations [b, $1, in the notation of section 2.2, 
where, apriori, b E C - {&;]. One has inequivalent representations for different values of 
b. From ( S t ( l I ) ,  one finds four vectors which I choose as a basis: 

bi = Ib, j) 

where bl and b2 are even (bosonic) and f, and fi are odd (fermionic). The relative parities, 
two even and two odd, of those vectors can be chosen without loss of generality. The two 
resulting R-matrices are related by a similarity (gauge) transformation. 

The generators for the representation [b, 41 are given by [7,8] 

(20) 1 fi = Ib- i , O )  f2  = Ib+ 4.0) b2 = Ib, -5) 1 

/ o  6 0 o \  / o  o o o \  
- ( - B O O O I  

v + = [  ; ; ; I v-= 0 0 0 0  
\ o  0 0 0 )  \ o  O Y O )  

o o y o  0 0 0 0  

- a 0 0 0  
0 0 0 0  0 € 0 0  

(22) 
.-(. o o o g  0 0 .) v-=[ 0 0 0 0  j 

The four parameters appearing in (21) and (22) are constrained by 

4ay = 1 + 2b 4 p ~  = 1 - 2b. 
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Thus there are two free parameters which correspond to arbitrary relative normalizations of 
the 4 2 )  doublet (bl, b2), and the two singlets f1 and fz. 

For b # 1 these representations are typical while for b = .ti they are atypical. 
Note that b can take complex values in what follows if one does not consider Hermitian 
representations. 

The q-deformed version of this representation is obtained as follows. The generators 
P+ remain undeformed. The matrix form of the four odd generators remains unchanged. 
However, the four parameters satisfy q-deformed constraints 

& y = [ 1 + 2 b ]  4 p E = [ I - B ]  (24) 

where [XI was defined in (13). If q goes to one then equations (24) yield equations (23) 
and one recovers the undeformed representation. 

4.2. The matrix R(q, b)  

The matrix R(q, b) is obtained by plugging the four-dimensional matrices, (21)-(22) and 
PA, subject to the deformation constraints (N) ,  into the universal R-matrix found in [5].  I 
shall give the result in a slightly different form below. 

I now put the R-matrix just obtained in a form which is convenient to give it a spectral 
parameter dependence. Recall that R(q, b) acts in V C3 V .  Because the two representations 
on the left and the right of this tensor product are equal, one can define a, graded, permutation 
operator, P. It satisfies 

(25) 

for two vectors, U and U, of definite parity, E, and E,, in the representation space V .  One 
can then define the matrix d given by 

d = PR. (26) 

dA(g) = A(g)l? (27) 
for all g E Uqosp(2, 2). This means that d commutes with the action of U,osp(2, Z), and 
therefore one has a decomposition in terms of projectors. 

P I U )  c3 Iu) = (-1)E"E"lu) C3 [U) 

From (18) one gets 

The tensor product of two representations [b,  $1 has the form: 

[b. 41 C3 [b, 41 = [Zb, 11 63 [2b + $, $1 63 [2b - i, $1 (28) 

with dimensionalities 8, 4 and 4 for the right-hand-side. When b = 0, the two four- 
dimensional representations coalesce and form one eight-dimensional atypical representation 
(see [7, 81). For this reason, the case b = 0 should be, andjs, treated with some care. 

I have found the eigenvalues and eigenvectors of R(q,b), and then obtained the 
projectors form these eigenvectors. The d-matrix can be written as 

d(q ,b)  =i1-4b*P1(q,b) -q-("Zb)zPz(q,b)-q-('-U)'P3(q,b) (29) 

where the Pj's form a complete set of orthogonal projectors, i.e. P i e  = &jP;. They 
correspond to [Zb, 11 ( P I ) ,  [2b + f ,  f ]  (Pz) and [2b - $, $1 (9). For b = 0, one takes a 
limit where the projectors Pz and P3 are combined. Define? 

(30) [ X I *  = q* f q - x .  

t The symbol [SI+ was also used in section 2.2 for atypical represenwions. However, there is no room for 
confusion. 
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I give below the non-vanishing elements of the projectors, which have a block-diagonal 
structure. One has: 

- 

(i) onedimensional sub-matrices 

 PI=^ , P z = P 3 = 0  ~ f o r b i @ b i , i = 1 , 2  
P2 = 1 
P3 = 1 

PI = P3 = 0 
PI = 4 = 0 

for fz @ fz 
for fi @ fi 

(ii) two-dimensional sub-matrices 

Pz = 0 

PI = 

P3 = 
[1 - 2bl+ 

for the two bases (bl c3 fi, f~ @ bl )  and (fi @ bz, bz @ fi) .  

PI = 

P2 =- 

[1 + 2bl+ 
1 

U + 2bl+ 

q-l-2b -1 
P3 = 0 ( -1 q'+% j 

for the two bases (b1 @ fz, f~ @ bl )  and (fz c3 bz, bz @ fz), 
(iii) four-dimensional sub-matrices 

(34) 

(35) 

-2bll-2bl!p -Zbl1-2bl112 -1 

IT+? 1 Il+2bl e 
- - 11--2b] 2bil-2bl!~ 

11+2bI ll+2bl Gip 
ZbI1-2blll' [l-%]!n 

q . i i Z i F q  * -9 - il-zb] zb [l-Zbl!n 

q4b --4 rl+ul"' -4 -1 

P3h.b) = Pz(q,-b)  P i ( q , b ) = Z d 4 - ~ z ( q , b ) - . 4 ( 4 . b )  

where D = [4bl+ - 2[1 -%]/[I + 2b1, for the basis (bl @ bz, f i  @ fz, fz @ f i ,  bz @ bl). 
The four-dimensional pieces of the projectors depend, a priori, on a, p ,  y and E .  I have 
chosen o( = y and p = E ,  which I call the symmetric choice because i is a symmetric 
matrix, except for some minus signs in the four-dimensional pieces. Other choices for a, 
,6, y and E ,  yield R-matrices that are gauge-equivalent to the foregoing matrix. 

All the foregoing analysis was done using a graded tensor product. The scalar product 
on the space [b, 41 @ [b, $1, is fie graded induced scalar product, which is therefore not 
positive definite. 

4.3. The m t r i x  k(x,q,b)  

To construct a two-dimensional lattice model one needs the spectral parameter dependent 
R-matrix, or the 'baxterized' form of the foregoing matrix. I find 
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The spectral parameter x is a multiplicative one (see (37)). The discrete 'index' A in (36) 
can take the value q1-4h2 for all b, or the value -q-' forb = 0. Thus (36) consists of two 
different matrices. I think of (36) as defining one matrix, and comment on the appearance 
of A in the following section. The spectral parameter dependent R-matrix is obtained as 
R(x, q ,  6 )  = P&x, q ,  b). It satisfies the graded Yang-Baxter equationt 

Riz(~y-',  4 .  b)Ridx, 4. b)Ru(y, 4. b)  = MY,  q ,  b)R13(xIq, b)Rid~y- ' ,  q, 6) .  (37) 
The R-matrices considered here are even operators. However, they are given by linear 
combinations of tensor products of odd and even operators, and therefore R13 does not act 
trivially on the second space (as the subscripts would imply for the non-graded case). Hence 
the Yang-Baxter equation is, in components, 

Rili2, ji jlRj~i,,ilk3Rjlkl.i~i3 (- 1) E' ' ( eiI+Eb3) ' = R.  . LZR.1211 . . R. l i J 3 , k b  . R k l J d t h  . (-l)%(ej3+el3) (38) 
where E! = 0, 1. The arguments of the matrices are the same as in equation (37). The matrix 
R z (-l)%% Ri,h,j, j, satisfies the ordinary Yang-Baxter equation. Therefore modulo 
some redefinitions the grading signs can be removed, however this does not bring any real 
simplifications. For A = q'-4bz the matrix R(x, q ,  b) also satisfies equations (51)-(53), 
where the representations on the left and right of the tensor product sign @ are both equal 
to [b, $1. 

4.4. Comments 

The matrix (36) has some unusual and interesting properties. This matrix is a trigonomerric 
R-matrix which depends on three continuous and arbitrary complex parameters, x ,  q and 
b. This seems to be a new result [13]. Usually a three-parameter dependence is associated 
with elliptic solutions of the Yang-Baxter equation. In this respect the free fermion model, 
which depends on three complex variables, enters the context of elliptic R-matrices [14]. 
Trigonometric R-matrices with three parameters, for U,,su(2), were found in [ 151. However, 
these matrices only exist at roots of unity (qN = I), and correspond to nilpotent irreducible 
representations. 

The dependence on the parameter b, a representation label, is immediately traced back 
to the non-compact generator B of the osp(2,Z) superalgebra. One can also obtain R- 
matrices which depend on an additional parameter. b', by considering an R-matrix for the 
representation [b, f ]  @ [b', $1, or for higher dimensional representations. 

One can. presumably, construct trigonometric solutions that depend on a higher number 
of continuous parameters, if the algebra has a higher number of non-compact generators, 
and/or one considers representations at roots of unity. 

The two matrices obtained for the two values A = q (for b = 0) and A = -4-l 
(for b = 0), are nor related by a gauge hansformation. A gauge transformation is a 
diagonal similarity transformation; it preserves the Yang-Baxter equation. This 'doubling' 
occurs here at the ajjine level.  the^ existence of two inequivalent R-matrices for the 
same representation was noticed for another rank two algebra, Uqsu(3) 1161, not Uqsu(3). 
However here, the two matrices may correspond to two inequivalent coproducts for the 
affine superalgebra Uqosp(2. 2) .  

The R-matrix for the fundamental representation [b = 0, f] of OSp(2 ,Z)  was given in 
[5].  One can recover it by taking A = -4-' and the limit b = Ot. The tensor product of 
the two representations [O, i] gives two eight-dimensional representations (as noted earlier). 

t These calculations and others were carried out using M A ~ H E M A T I C A ~ ~  
t This matrix does not, however, satisfy (53). 

- 

h 
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One of these representations is atypical. The limit does exist, as can be seen by carefully 
considering the projectors Pz and 4: they combine as expected to form an eight-dimensional 
projector onto the atypical representation, and a singlet 'projector' for the one-dimensional 
invariant subspace in it. The limit also exists for the other value of A. 

Similarly, the limits b = &; are not straightforward. One can make sense of these 
limits from the final form (36). However, because (36) corresponds to the the 'symmetric 
choice', the limit corresponds to the tensor product of two direct sums [O] @ [{I+. 

I give for completeness, in the appendix, the rational limits obtained from (36). Rational 
limits can be obtained by letting both x and q tend to one, with n behaving as some power 

I have obtained new trigonometric R-matrices which depend on three parameters. I 
of q. 

believe these matrices have features which were not found before in the literature. 

5. Bethe amatz 

5.1. The need forfusion 

The matrix (36) has exactly 36 non-vanishing matrix elements. The corresponding 36-vertex 
model cannot be solved using a direct Bethe ansatz approach. There are simply too many 
non-vanishing matrix elements. This is due to the fact that the representation [b, 41 is not the, 
smallest representation of the algebra osp(2,2). Because of the 'excess' of matrix elements, 
the algebraic RTT relations, which play a central role in the algebraic Bethe ansatz method, 
do not have the form which allow a Bethe ansatz. For this same reason too, the obvious 
candidates for 'highest weights vectors', from which the Bethe ansatz eigenvector is built 
by applying lowering operators, do not have the required properties. Namely, there are too 
many elements of the monodromy matrix, (41), which do not annihilate these candidates. 
The situation is similar for higher dimensional representations of q-deformed t i e  algebra. 
A fusion procedure is used for all those cases. See [IZJ~for Uqsu(2) for instance. 

In what follows I take h = q'-&' (in (36)). 

5.2. Auxiliary and quantum spaces 

Fusion requires involving other lattice models. To do this, one finds solutions of the Yang- 
Baxter equation (the dependence on the other parameters is implicit) 

RI~(xY-I)RI~(x)Rz(Y) = Rz)(Y)RI~(~)RIz(xY-') (39) 
where the three spaces involved are not necessarily copies of the same space. The matrices 
R exist for the tensor product of any representations of a given q-deformed Lie algebra, or 
superalgebra. The computations needed to find these matrices are not usually simple. Now 
recall how one obtains transfer matrices of vertex models. Define then the local operator 
L,(x) ,  at site n and for an auxiliary space denoted by 'a', by 

L ( x )  Ran(x). (40) 

T(x) = L L ( x ) ~ L L - I ( ~ ) ~ . . . ~ . L I ( x )  (41) 

t ( x )  = Strn(T(x)) C(-l)"T,.(x) (42) 

The corresponding monodromy matrix, T(x), is 

where the tensor product is graded, and L is the number of sites. The transfer matrix is 
given by 

(1 
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where Str, is the supertrace over the auxiliary space ‘a’. I am considering here periodic 
boundary conditions. I shall come back to this point later. 

Equations (39). (40) and (41) imply that the monodromy matrices intertwine according 
to 

I 2 
where T (x) = T(x) @ 1 and T (y) = 1 @ T(y ) .  

The two auxiliary spaces, 1 and 2 in the subscripts and ‘top-scripts’ of (43), are not 
necessarily the same. Both transfer matrices act in the same quantum space, which is space 
3 in (39) tensored L times. The supertrace over the two auxiliary spaces 1 and 2, of the 
RTT relations (43), gives the commutations of the transfer matrices at different spectral 
parameters: 

The subscripts in (44) are just to remind us that the two auxiliary spaces can be 
different. This commutation relation implies that the transfer matrices can be diagonalized 
simultaneously. 

5.3. Fusion 

The second ingredient in the fusion procedure consists of obtaining relations between some 
transfer matrices that commute, as in (44). An R-matrix ‘degenerates’, or becomes block- 
diagonally proportional to projectors, at certain values of the spectral parameter x. The 
projections are on representations which appear in the tensor product of the representations, 
for which the R-matrix was built. This degeneracy is a generic feature of R-matrices. 

The projectors are used to construct R-matrices for the representations corresponding 
to the projectors. I give explicit examples of such a degeneracy and fusion in the following 
sections. 

5.4. Some technical considerations 

I follow the philosophy of [12J One wants to diagonalize, by algebraic Bethe ansatz, 
the transfer matrix of the model constructed from the R-matrix of VI 8 V2, for two 
representations VI and V, of a certain Lie algebra (or superalgebra). If VI, the auxiliary 
space, is the ‘fundamental’ representation of the algebra then a diagonalization by algebraic 
Bethe ansatz can be performed without further ado. This is because the monodromy matrices 
intertwine with the R-matrix of the tensor product of two fundamental representations. If VI 
is not ‘the’ fundamental, it should obtained by tensor product of the fundamental and smaller 
representations. The Bethe ansatz is performed for (fund. rep.) 8 V2. The eigenvalues, for 
the transfer matrix of the lattice model fi 8 V2, are obtained using the fusion equations and 
the commutation of the intermediate transfer matrices. 

Note that higher representations can be considered. They give relations between transfer 
matrices, but are not really helpful for doing a Bethe ansatz. 

The osp(2,2) algebra has two three-dimensional representations, [$I+ and [$I-. These 
are the smallest non-trivial representations. I consider [;I+. As we shall see, the R-matrix 
of [$I+ 8 [;I+ has a form which allows an algebraic Bethe ansatz. To ‘bridge the gap’ 
between [$I+ and [b, $1, I determine the R-matrix for [$I+ 8 [b ,  $1. The monodromy 
matrices of this tensor product intertwine using the transfer matrix of [$I+ @ [$I+. An 
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algebraic Bethe ansatz for the transfer matrix of [$I+ @ [b, f] is possible. I do this in 
section 5.8. Then, to remain faithful to the foregoing philosophy, one would like to obtain 
the representation [b, i] in a tensor product of representations [$I*. However, after careful 
consideration, the only relevant tensor product is of [4]+ with itself: 

[+I+ @ [+I+ = r;, $1 fB HI+ (45) 
with dimensions 4 and 5 for the right-hand side. 

The representation theory of osp(2,2) is such that, of all the four-dimensional 
representations Ib, +I. only I&:, $1 can be obtained in the tensor product of the three- 
dimensional representations. In this sense, the representations [b ,  ~ $ ]  are 'fundamental' too. 

Nevertheless, a fusion in the auxiliary space to obtain the transfer matrix  of^[;, @ 

[b, $1, the eigenvalues, and the Bethe ansatz equations, is useful. I use these results to 
conjecture the eigenvalues and Bethe ansa& equations of the R-matix of [b,.;] @ [b, i]. 

Let 3 =.[;I+, 4' = [;, i] and 4 = [b, to simplify the notation. One then has five 
R-matrices to consider, R3@3 , R3"4', R3@4, R4'@4 and R4@4. 

In what follows the spectral parameters are arbitrary. For the first and second spaces 
equal to the three-dimensional representation, and the third space equal to [b, 41, in (39), 
one obtains a monodromy matrix with a [$+-auxiliary space and a [b, ']-quantum space. 
These T(34) monodromy matrices intertwine as in (43) with the matrix RSm3, and therefore 
their transfer matrices. which act in the tensor products of [b, $]-spaces, commute. It 
is these transfer matrices that are directly diagonalized by Bethe. ansatz. A first space 
equal to [;I+. a second space equal to [;, $1, and a third space equal to [b, $1 give 
monodromy matrices T(34) and T(4'4) intertwining according to a [$I+ @ [;, $]-matrix. 
The transfer matrices again commute. A fusion equation (58) is then found. It relates the 
relevant eigenvalues. Similarly, considering (1 ,2,3)  = (4', 4,4), in an obvious notation, 
ensures the possibility of simultaneous diagonalization of the r(4'4) and r(44) matrices. 
Considering (1 ,2,3)  = (4', 4'. 4) ensures the possibility of simultaneous  diagonalization^ 
of T ( ~ ' ~ )  matrices. Finally, considering (l , ,  2 ,3)  = ~(4 ,4 ,4)  ensures the~possibility of 
simultaneous diagonalization of dU) matrices. 

5.5. The R-matrixfor [$I+ @ [$I+ 

Let B I  = 1 1 ,  ?), F = I I , O )  and BZ = 14, -4) form the basis of [$I+. These vectors should 
not be confused with the four'vectors defined earlier. The q-deformed generators are 

P+ = diag(0. -1, -1) P- = diag(1, 1 , O )  (46) 
(v+)23 = a' (V-)zl = -a' (T+)I* = If' (i7-)32 = -y' (47) 

1 1  

where only the non-vanishing elements of the odd generators are given. The multiplets 
normalizations a' and y' satisfy 

4a'y' = [Z]. (48) 
The corresponding R-matrix, denoted by r .  is found using methods similar to those used 

to determine the R-matrix of the fourdimensional representation. The matrix r depends 
only on the product a'y', and no choice of a' and y' is necessary. The non-vanishing 
elements of r are given by 

r = l  fo rB i@BI ,  B z @ B z  
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j i  
' = ( h  j )  

for the bases (B1 @ F, F @ Bl), (BI @ Bz, BZ €3 BI), ( F  @ Bz, BZ @ F ) ,  where 

5.6. The R-matrix f o r  [+I+ @ [b, 41 
The determination of the 'hybrid' R-matrix, corresponding to a left representation If]+ 
and a right representation [b, 41, proceeds differently. Because the representations are 
different, the commutation of the coproduct A with an d-matrix does not hold. Instead one 
can still use the universal spectral parameter independent R-matrix with the two foregoing 
representations to obtain the form of the matrix and hence simplify the following calculation. 
Jimbo [17] has shown for affine q-deformed Lie algebras that a solution of 

- 
' &g)R(x) = R(x)&) (50) 

for the generators g of the @ne q-deformed algebra Uqosp(2, 2), automatically satisfies 
the Yang-Baxter - equation. This result was generalized in 1181 for superalgebras. The 
coproducts A and 2\ extend the coproducts defined earlier to the affine algebra Uqosp(2, 2). 
The affine coproducts coincide with the usual ones for all the generators of Uqosp(2, 2) 
except for the additional three generators belonging to the affine algebra. The matrix 
R3@4(x, q .  b) has the same block-diagonal structure as the corresponding spectral parameter 
independent matrix. More precisely the matrix acts non-trivially in the same subspaces. I 
denote R3@4 by R in this section and in the following sections. It is enough to look for a 
solution of the following equations: 

R(x)A(V+) =z(V+)R(x) (51) 
R(x)A(V+) = A(V+)&x) (52) 

- _  
R(x)[eo @ qh"'z + xq-h dZ €3 eo] = [eo @ q-ho'z +xqholZ @ eo]R(x)  (53) 

where ho = 4.5'3 and eo is proportional to the q-deformed generator S- (the normalization is 
irrelevant). With fo proportional to the q-deformed generator S+, the three generators eo, f o  
and ho correspond to the additional root of the q-deformed affine superalgebra Uqosp(2. 2). 
An equation similar to (53) holds for fo. Note that, for the representations at hand, the 
generators on the left of the tensor products are in the three-dimensional representation 
while those on the right are in the four-dimensional one. This system of equations is 
overdetermined in the 22 unknowns of R(x). This is always the case for such systems. I 
take a! = y ,  fl  = E in (21), (22), and a' = y' in (47). Solving the linear equations (51)-(53), 
I obtain the non-vanishing elements of the 12 x 12 R-matrix: 

*_ 

R ql-= f o r B ~ @ b l .  B ~ @ f i ,  Bz@fi, Bz@bz 
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for the basis (BI @ fz. F @ bl), 

for the basis ( F  @ bz, Bz @ fz), 

for the basis ( B I  @ bZ. F @ fi, B2 @ bl). The matrix R3@4 has the following properties: 

R(0, q ,  b) = R(q, b) R-I(x, q ,  b)  = q"-'Rm(x-', q. b) (54) 
where R(q, b) is  the^ spectral pirameter independent R-matrix and the superscript 'ST' 
denotes a supertransposition for the non-positive definite scalar product. 

5.7. A fusion equation 

The next step in obtaining Bethe ansatz equations consists of obtaining a fusion equation 
that will .give a functional relation between  the^ eigenv,dues of the four-dimensional model 
and those of the hybrid model. First one notices that the three-dimensional R-matrix 
becomes block-diagonally proportional to a five-dimensiond projector for x = q-4. Define 
a projector P as 

P = Ar(q4 ,q)  with A = diag (1, (55) 

where U = q2 + q-'. Let p 
Define the matrix 

1 - P .  One can now do the fusion in the auxiliary space. 

&z)3(x1 4. b) = BizpizRid~q-z. 4. b)Rz3(XqZ, q. b)pizBzl (56) 
where the nine-dimensional matrix B is the change of basis matrix, to the basis that 
diagonalizes both projectors, P and p. B is given by three ones and three blocks 

(if  : > .  (57) 

The matrix i? has 36' elements. However, there are many rows and columns of zeros. 
One can remove them and obtain a 16 x 16 R-matrix for [$, 41 8 [b ,  ;I. The matrix 
(56), which was denoted R4@" in section 5.4, satisfies the various Yang-Baxter equations 
discussed in the same section. 

The supertrace, in the spaces 1 and 2, of equation (56) replicated to an L-site chain, 
gives a relation between the transfer matrices of the [;I+ @ [b, 41, [i, 11 @ [b ,  41 and 
[I]+ 8 [b, i] lattices: 

(58) 
The superscripts refer to the dimensions of the representations. The additional minus sign 
accounts for a mismatch in the grading of the bases. As explained in section 5.4, all the 
transfer matrices in (58) commute for all values of the spectral parameter x. Therefore the 
same relation holds for the respective eigenvalues. 

-r(4'4)(x) = r(34)(xq- z ) r  (34) (xq') + 5(54)(x). 
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5.8. Bethe ansatz 

I now perform a nested algebraic Bethe ansatz calculation to diagonalize the transfer matrix 
of the the 3 8 4 model (see 1191 for instance). The matrix L. defined above is given by 
(40) and R3@4(x). In components L, reads 

L(U)",.bp = R3@4(~)",.w 1 < a , b < 3  l < c i , p < 4  (59) 
where the Latin indices correspond to the auxiliary space, and the Greek indices to the 
quantum space. The monodromy matrix (41) satisfies (as explained in section 5.4) 

;I*(U - v)T(u)  8 T ( v )  = T(7J) 8 T(U)&2(U -U). (60) 
In components, with all Latin indices varying from 1 to 3, and repeated indices indicating 
summations, (60) reads: 

ididr ,blh(u - 'J)Thic~ (U)~~,(v)(-l)e~"l+"') 
= T d , b , ( U ) T d ~ h ( U ) i b , b , c , h ( U  - U ) ( - I ) Q c E d l + E b ~ )  E] = &3 = 0, E2 = 1. 

(61) 
The monodromy matrix (41), in components, is given by 

ob (T(u)  )al ...., riL:pl ...., = L ( u ) , , ~ . , , , B L L ( u ) , L = L . , . ~ ~ ~ ~ L - ~  ... 

The signs arise because of the graded tensor product. 
There are two obvious candidates for the 'hi hest weight vector', or ferromagnetic 

vacuum, In,) = f I  8 . . . 8 fy) and In,) = f2 8 . . . 8 f?), where f l  and fi were 
defined in (20). The two vectors constructed out of bl, or b2, turn out not to be annihilated 
by enough zj's to perform the ansatz. In what follows I give the results for ISZl). I shall 
use the following notation for the matrix of operators T: 

(1) 8 

DII  CI 0 1 3  

T = (  C3 A D33 B 3 ) .  (63) 

The dependence on U, or x = @, is implicit. The action of T on In,) can be summarized 
in 

Recall that the R-matrix elements are those of R3@4(x). The fermionic 'creation' operators 
are given by C1 = q2 and C, = f i 2 .  These operators change the spin of the vector they 
are acting on by units of -; and 1, respectively. The eigenvector ansatz is 

14, F) = CU,(ui)Cu2(u2). . .C.~(U,)IRI)F~".~~"~~' ai E k 3 )  (65) 
where the spectral parameters 4 and the coefficients F are to be determined. The transfer 
matrix is 

5 = Str,(T) = TII 4- T33 ~- TU. (675) 
Note that a twist on the periodic boundary conditions can be introduced at this level. 

The calculation, now proceeds along the usual lines of the nested algebraic Bethe 
ansatz method. One pushes the three pieces of the transfer matrix through the creation 
operators of the eigenvector, and obtains 'wanted' and 'unwanted' contibutions. The former 
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contributions are proportional to the eigenvector ansatz, while the latter are forced to vanish, 
giving a condition on the coefficients F .  More precisely F has to be an eigenvector of a 
spin-chain on n sites, with inhomogeneities given by the ui's, and constructed out of a 
4 x 4 R-matrix obtained from the nine-dimensional matrix r .  By doing a similar ansatz, 
one obtains the eigenvectors of this chain, with one set of equations. Requiring F to be an 
eigenvector gives another set of equations. 

5.9.~ Eigenvalues and Bethe ansotz equations 

The eigenvalues of the 'hybrid' model can be written: 

where the parameters xi and yj are solutions of the Bethe ansatz equations 

These Bethe ansatz equations reflect the choice of a particular grading of the bases. 
The R-matrix of the lattice model with auxiliary space [;, $1 and quantum space [b '1 

'. 2 and the eigenvalues of the corresponding transfer matrix are obtained from the fusion 
equation (58). I find for the eigenvalues (up to an unessential factor q(2-4h'L): 

n m  xq - yjq-l xq3 -xiq-3 " xq-3 - yjq3 xq3 - xiq-3 

(70) 
xqh-3/2 - 4 312-h 14 h-712 - 

xq-I/2-b - qh+1/2 xq-s/2-b - 
xq3 - xiq-3 
xq-' - xiq . i=I 

Recall that 4' = [$, $1 (the auxiliary space) and 4 [b ,  $1 (the quantum space). Both 
eigenvalues (67) and (70) seem to have poles at values related to the ansatz parameters, xi 
and y j .  However, the Bethe ansatz equations ensure precisely that the residues, at these 
apparent poles, vanish. This is generally the case with a Bethe ansatz solution. It is also 
possible to obtain from (58) the eigenvalues of the transfer matrix based on the R-matrix 
of the representation [11+ @ [b, 41. 

I now rewrite the Bethe ansatz equations, (68) and (69), in the 'generic form'. For 
x = elu, q = e iY/2 and some redefinitions, the equations becomet: 

sinh ~ ( U K  - uj + iy) 
I < k < n  (71) 

sinh i ( u k  - ( b  - 1/2)iy) 
sinh$(ur + (b  - 1/2)iy) sinh ~ ( U X  - vj - iy) 

t This y should not be confused with the one entering the generators of usp(2.2) for the representation [b. $1. 
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sinhi(uk - uj + iy) 
sinh i ( u a  - uj - iy) 

sinh f(ul - uj + 2iy) 1 sinh $(UL - uj - 2iy) l < j < m .  (72) -- - 

The choice of the ferromagnetic vacuum 1522) for~the eigenvector ansatz gives a different 
set of equations. They differ from (71)-(72) by the change b - 4 + -(b + i). The 
eigenvalues also differ in this manner. Such a difference between the Bethe ansatz results 
indicate that the eigenvectors obtained from both IQ,) and 1522) may be necessary to have 
a complete set of eigenvectors. This will be investigated elsewhere. 

5.10. A conjecture 

As indicated earlier, the representation [b, &] cannot be obtained from a tensor product 
of smaller representations (if b # &;). I conjecture the result for the eigenvalues of 
T(#) transfer matrix, based on the Bethe ansatz equations already obtained, and which also 
hold for 4 8 4 since they depend only on the quantum space and the algebra, and other 
considerations. More precisely, I replace the prefactors raised to the power L in (70). by the 
ones corresponding to the mahix rm4, aciing on the eigenvector 1521). Then this eigenvalue 
is 'dressed' by products obtained through a 'minimal' modification of the terms inside the 
products of the eigenvalue (70). This modification must preserve the Bethe ansatz equations 
found earlier, meaning, the vanishing of the residues at the apparent poles must yield the 
same equations. Finally the eigenvalues of ihe Hamiltonian must be generically real. The 
eigenvalues are then given by 

s in$(u+(l  -2b)y)  sinhi(ui+uk+(b-$)yi) 
s in i (u- ( l -Zb)y)  )n. ,=,sinhi(ui+uk-(b-f)yi) 

sin($) 
sin $(U - (1 - 2b)y)  

sinh i (ui  + uL + ( g  - b)yi) sinh i(ui + uk + (b - +)Vi), (0 f i  sinh + UL - ( 4  + b)yi) sinh ;Cui + uk - (b - 4)yi) 

sinh $(ui + y - (g  + b)yi) sinh $Cui + ua + (b - i)yi) 
+ E f i s i n h $ ( u i + u l  - ( i+b)yi)s inhi(ui+un -($+b)yi)  

" 

(73) 

sin($) sin $(U - ~ y )  

s i n ~ ( u - ( l + Z b ) y ) s i n ~ ( u - ( l - Z b ) y )  

+ uk - (: + b)yi)' 

" sinh $Cui + u p  + (b - i)yi) 
x n .  x=l sinh T(ui 1 

The integers n and m can be restricted to 

0 < m < n < 3 L  (74) 
the ansatz eigenvectors would otherwise identically vanish. This follows from an analysis 
of the action of the creation operators on the generating vectors at both levels of the Bethe 
ansatz. 

Considering higher dimensional representations, and the relations between the respective 
transfer matrices, one can obtain functional relations for the eigenvalues of the transfer 
matrices, including the transfer matrix of the lattice with both auxiliary and quantum spaces 
equal to [b, i]. These relations can serve as a check for (73). 
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5.11. Hamiltonian and momentum 

The logarithmic derivative of the transfer matrix jt4@4 at x = 1 or U = 0 gives a spin- 
chain Hamiltonian. This Hamiltonian has coupling constants that depend on y and b. 
However, the eigenvalues can be real for certain excitations., Dropping the contribution 
from the prefactor, which amounts to a translation of the energy origin, the eigenvalues of 
the Hamiltonian are given by 

1 "  sin(($ - b ) y )  
2 k=l sinh :(up + (1 - b)yi) sinh :(up - (f - b)yi) ' 

E = - C ,  
The eigenvalues of the momentum operator, P = In z(u = 0), are given by 

sinh $(uk + y (b  - f)i) 
sinh $(UX - y(b  - i)i) 

up to a translation by a constant. 

(75) 

5.12. The parameter b: a generalized spin 

The Bethe ansatz equations (71) and (72) have the form expected from the algebra and the 
highest weight label of the representation [b, 11. The b --$ appearing in the left-hand-side 
of (71) is proportional to the scalar product of this highest weight and the first root of the 
simple root basis. 

The comparison of the Bethe ansatz equations, (71) and (72), with those of the SU(2)- 
chain with arbitrary spin, shows why b - 4 can be considered as some equivalent of a 
continuous spin label. In contrast to the generalized spin of [lS], which only exist for q a 
root of unity, the 'spin' b - ~ f  exist for all values of q.  

For b in certain ranges with rational bounds, the value of the central charge is 
independent of b;  however the values of the central charge will be different for each domain. 
The conformal weights will depend on b continuously throughout each domain. 

6. Conclusion 

The motivation,for studying lattice models with an underlying U,,osp(2, 2) symmetry arose 
from an attempt at constructing lattice models which in a certain continuh limit could 
yield N = 2 superconformal field~theories. The supersymmetry may then be traced back to 
the lattice. The first step in such an approach consists of determining R-matrices. In this 
paper I have derived trigonometric R-matrices which depend on two continuous generic 
parameters q and b. The origin of the second parameter is a U(1) generator in the Cartan 
subalgebrat. I give the rational limits of the matrices obtained; they also depend on the 
parameter b. A Bethe ansatz diagonalization of the transfer matrix is complicated by the 
representation theory of the superalgebra. After obtaining the Bethe ansatz equations for a 
specific model using fusion I conjecture the result for the eigenvalues of the [b, 41 @ [b, 41 
 lattice. These results can readily be generalized to twisted periodic boundary conditions. 
Preliminary results indicate that the central charge in the continuum limit does not depend 
continuously on b (the conformal weights do however). These.results depend on a careful 
analysis of the Bethe ansatz equations. The determination of the vacuum of the model is 

t R-matrices with a double parametric dependence have been derived for Uqsu(2) [IS]; however, there the 
deformation panmeter y has to be a root of unity. 
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complicated by the grading of the algebrat. A numerical study will be useful to find the 
ground state. Transfer matrices with periodic boundary conditions as studied here commute 
with each other at different values of the spectral parameter, but they do not commute with 
the generators of Uq0sp(2, 2). This does not mean, however, that such a symmetry is not 
present. For SU(2) the underlying symmetry was exhibited in 1211 for twisted boundary 
conditions. This can presumably be generalized. However, by considering open boundary 
conditions it is possible to obtain transfer matrices which commute with the q-deformed 
algebra. To obtain such matrices one needs to find K-matrices. This is part of a work in 
progress. 
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Appendix 

I briefly discuss the rational limits [22] obtained from (36). Rational limits can be obtained 
by letting both x and q tend to one, with x behaving as some power of q. Consider for 
instance the limit obtained for the choices A = q'-4b , q = e- and x = e4'"y, where y 
tends to zero. The resulting rational R-matrix is 

&u,b)=Pi(q  =1,b)+gz(u,b)Pz(q = I,b)+g3(UIb)P3(q = 1.b) (77) 
where 

The block-diagonal matrix (77) contains: 
(i) one-dimensional sub-matrices 

& u , b ) = l  f o r b i B b i ,  i = l , 2  
&U, b) = gz@, b )  
&U, b) = gs(u, b )  

for f2 @ fz 
for fi @ fi 

(ii) two-dimensional sub-matrices 

1-2b+2u, 2u 1-2b 
E(u, b) = 

k(u, b )  = 1+2b+2u ( ':U'' l T 2 b )  

for the two bases (bl €3 f2, fz €3 bi) and (f2 €3 bz, bz 8 fz), 
(iii) a four-dimensional sub-matrix 

I -n(u, b) 1 - 4b2 -4u(l + U )  n(u, b )  
-nb. b) -4u(l+ U )  1 - 4bz nh. b)  

k(u, b) = - 
dlu. hl . .  . . .  . -'--'-'! 4u2 -n(u, b )  -n(u, b)  1 -4b2+4u ) 

t In this respect the results I obtain here seem to contradict the wnclusions of [ZO] 
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where 

n(u, b )  = 2u(l + 2b)1'2(1 - 2b)l" d(u, b )  = (1 + 26 + 2u)(l - 2b + 2u) (85) 

for the basis (bl €3 bz, fi @ fz, fz €3 f i ,  bz €3 bl). The rational matrices have the block 
structure of their trigonometric parents, and they satisfy a Yang-Baxter equation with U as 
an additive spectral parameter. The parameter b appears~explicitly in (77); it cannot be 
scaled away by rescaling the spectral parameter U. 
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